A Game of Telephone
\[ \begin{aligned} \theta_{\text{degrees}} &= \text{average in our population, over 2 and 4-year degrees, of the incremental value of the degree} \\ &=\frac{(\unicode{x25A0} - \unicode{x25B2}) + \class{fragment}{(\unicode{x25B2} - \unicode{x25CF})}}{2} \\ &=\sum_x \alpha(x) \mu(x) \qfor \alpha(x) = \begin{cases} \class{fragment}{\frac12}&\qqtext{if} x=\text{\unicode{x25A0} \ 4-year degree} \\ \class{fragment}{\frac{-1 + 1}{2}=0}&\qqtext{if} x=\text{\unicode{x25B2} \ 2-year degree} \\ \class{fragment}{-\frac12}&\qqtext{if} x=\text{\unicode{x25CF} \ high school diploma} \end{cases} \\ & \\ & \\ & \\ \theta_{\text{people}} &= \text{average in our population, over people with 2 and 4-year degrees, of the incremental value of their last degree} \\ &= \frac{4 \times (\unicode{x25A0} - \unicode{x25B2}) + \class{fragment}{2 \times (\unicode{x25B2} - \unicode{x25CF})}}{6} \\ &=\sum_x \alpha(x) \mu(x) \qfor \alpha(x) = \begin{cases} \class{fragment}{\frac46}&\qqtext{if} x=\text{\unicode{x25A0} \ 4-year degree} \\ \class{fragment}{\frac{-4 + 2}{6}=-\frac26}&\qqtext{if} x=\text{\unicode{x25B2} \ 2-year degree} \\ \class{fragment}{-\frac26}&\qqtext{if} x=\text{\unicode{x25CF} \ high school diploma} \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \hat\theta_{\text{degrees}} &= \text{average in our sample, over 2 and 4-year degrees, of the incremental value of the degree} \\ &=\frac{(\unicode{x25A0} - \unicode{x25B2}) + \class{fragment}{(\unicode{x25B2} - \unicode{x25CF})}}{2} \\ &=\sum_x \hat\alpha(x) \hat\mu(x) \qfor \hat\alpha(x) = \begin{cases} \class{fragment}{-\frac12}&\qqtext{if} x=\text{\unicode{x25A0} \ 4-year degree} \\ \class{fragment}{\frac{-1 + 1}{2}=0}&\qqtext{if} x=\text{\unicode{x25CF} \ high school diploma} \\ \class{fragment}{\frac12}&\qqtext{if} x=\text{\unicode{x25B2} \ 2-year degree} \end{cases} \\ & \\ & \\ & \\ \hat\theta_{\text{people}} &= \text{average in our sample, over people with 2 and 4-year degrees, of the incremental value of their last degree} \\ &= \frac{3 \times (\unicode{x25A0} - \unicode{x25B2}) + \class{fragment}{(\unicode{x25B2} - \unicode{x25CF})}} {4} \\ &=\sum_x \hat\alpha(x) \hat\mu(x) \qfor \hat\alpha(x) = \begin{cases} \class{fragment}{\frac34}&\qqtext{if} x=\text{\unicode{x25A0} \ 4-year degree} \\ \class{fragment}{\frac{-3 + 1}{4}=-\frac24}&\qqtext{if} x=\text{\unicode{x25CF} \ high school diploma} \\ \class{fragment}{-\frac14}&\qqtext{if} x=\text{\unicode{x25B2} \ 2-year degree} \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \hat\theta_{\text{degrees}} &= \text{average in our sample, over 2 and 4-year degrees, of the incremental value of the degree} \\ &=\frac{\class{fragment}{(\unicode{x25A0} - \unicode{x25B2})} + \class{fragment}{(\unicode{x25B2} - \unicode{x25CF})}}{2} \\ &=\sum_x \hat\alpha(x) \hat\mu(x) \qfor \hat\alpha(x) = \begin{cases} \class{fragment}{\frac12}&\qqtext{if} x=\text{\unicode{x25A0} \ 4-year degree} \\ \class{fragment}{\frac{-1 + 1}{2}=0} &\qqtext{if} x=\text{\unicode{x25B2} \ 2-year degree} \\ \class{fragment}{-\frac12}&\qqtext{if} x=\text{\unicode{x25CF} \ high school diploma} \end{cases} \\ & \\ & \\ & \\ \hat\theta_{\text{people}} &= \text{average in our sample, over people with 2 and 4-year degrees, of the incremental value of their last degree} \\ &= \frac{\class{fragment}{2 \times (\unicode{x25A0} - \unicode{x25B2})} + \class{fragment}{2 \times (\unicode{x25B2} - \unicode{x25CF})}}{4} \\ &=\sum_x \hat\alpha(x) \hat\mu(x) \qfor \hat\alpha(x) = \begin{cases} \class{fragment}{\frac24}&\qqtext{if} x=\text{\unicode{x25A0} \ 4-year degree} \\ \class{fragment}{\frac{-2 + 2}{4}=0}&\qqtext{if} x=\text{\unicode{x25B2} \ 2-year degree} \\ \class{fragment}{-\frac24} &\qqtext{if} x=\text{\unicode{x25CF} \ high school diploma} \end{cases} \\ \end{aligned} \]
\(x\) | \(m_x\) | \(\mu(x)\) |
---|---|---|
12 | 3.94K | 28K |
14 | 1.39K | 39K |
16 | 4.20K | 39K |
18 | 1.59K | 86K |
20 | 444.00 | 110K |
\(x\) | \(N_x\) | \(\hat\mu(x)\) |
---|---|---|
12 | 555.00 | 30K |
14 | 199.00 | 40K |
16 | 549.00 | 41K |
18 | 225.00 | 86K |
20 | 61.00 | 112K |
x | \(N_x\) | \(\hat\mu(x)\) |
---|---|---|
50 | 124 | 1 |
52 | 278 | 0.82 |
54 | 326 | 0.69 |
56 | 356 | 0.58 |
58 | 403 | 0.51 |
60 | 256 | 0.51 |